Ëàáîðàòîðèÿ ðîáîòîòåõíè÷åñêèõ ñèñòåì
Ïîèñê ïî ñàéòó
Àâòîðèçàöèÿ
Çà÷åì íóæíà ðåãèñòðàöèÿ?
Ëîãèí:
Ïàðîëü:
Ðåãèñòðàöèÿ
Çàáûëè ñâîé ïàðîëü?
Äëÿ ñîòðóäíèêîâ ÎÈÏÈ
Äëÿ ñîòðóäíèêîâ ÎÈÏÈ ÍÀÍ Áåëàðóñè 
Äëÿ îáðàùåíèé
Äëÿ îáðàùåíèé

ïðîñèì ïðèíÿòü ó÷àñòèå â îïðîñåçàïîëíèòü àíêåòó

Èññëåäîâàíèå è ðàçðàáîòêà òåîðåòè÷åñêèõ îñíîâ ñëîæíûõ äèíàìè÷åñêèõ ñèñòåì â ïðèëîæåíèÿõ ê ñàìîîðãàíèçóþùèìñÿ ðàñïðåäåë¸ííûì ñèñòåìàì óïðàâëåíèÿ ãðóïïàìè ðîáîòîòåõíè÷åñêèõ óñòðîéñòâ

ãðàíò ÁÐÔÔÈ-ÐÔÔÈ ¹Ô12Ð-116 

Öåëü ðàáîòû ÿâëÿåòñÿ èññëåäîâàíèå ôóíäàìåíòàëüíûõ ïðèíöèïîâ ïîñòðîåíèÿ è àíàëèçà ôóíêöèîíèðîâàíèÿ  ñëîæíûõ äèíàìè÷åñêèõ ñèñòåì, îáëàäàþùèõ öåëåíàïðàâëåííûì ïîâåäåíèåì, äëÿ ñîçäàíèÿ àëãîðèòìîâ óïðàâëåíèÿ ðîáîòîòåõíè÷åñêèìè àïïàðàòàìè ñ ïîìîùüþ ìóëüòèàãåíòíîãî ïîäõîäà

 ðàìêàõ ïðîåêòà áûëè ðåøåíû ñëåäóþùèå çàäà÷è:

  1. Ðàçðàáîòàíû íîâûå ìåòîäû íåëèíåéíîãî àíàëèçà ñëîæíûõ äèíàìè÷åñêèõ ñèñòåì íà îñíîâå ìàòðè÷íîé äåêîìïîçèöèè â ïðîñòðàíñòâå ñîñòîÿíèé.
  2. Ðàçðàáîòàíû àëãîðèòìû îïòèìàëüíîãî ðàñïðåäåëåíèÿ âû÷èñëèòåëüíîé íàãðóçêè, à òàêæå âðåìåííûõ è ýíåðãåòè÷åñêèõ ðåñóðñîâ ñðåäè èíòåëëåêòóàëüíûõ àãåíòîâ.
  3. Ðàçðàáîòàíû íåéðîñåòåâûå àëãîðèòìû ðàñïîçíàâàíèÿ îáðàçîâ íà îñíîâå ñåíñîðíûõ äàííûõ.
  4. Ðàçðàáîòàíû àëãîðèòìû ïðåäñêàçàíèÿ ïîâåäåíèÿ ñëîæíûõ äèíàìè÷åñêèõ ñèñòåì.
  5. Ðàçðàáîòàíû àëãîðèòìû äèíàìè÷åñêîãî àíàëèçà ñîñòîÿíèé âåñîâ îáó÷åííûõ íåéðîííûõ ñåòåé äëÿ âûÿâëåíèå ôàêòîâ ïåðåîáó÷åíèÿ.
  6. Ðàçðàáîòàí àëãîðèòì àíàëèçà ñåìàíòèêè ñîîáùåíèé â ñðåäå èíòåëëåêòóàëüíûõ àãåíòîâ.
Íàó÷íàÿ èäåÿ ïðîåêòà, çàêëþ÷àþùàÿñÿ â ïðèìåíåíèè òåîðèè íåëèíåéíûõ äèíàìè÷åñêèõ ñèñòåì äëÿ àíàëèçà è ðàçâèòèÿ ìåòîäîâ àäàïòàöèè è ñàìîîðãàíèçàöèè â ìóëüòèàãåíòíûõ ðîáîòîòåõíè÷åñêèõ ñèñòåìàõ, âûñêàçûâàåòñÿ âïåðâûå.  íàñòîÿùåå âðåìÿ â ìèðå âåäóòñÿ èññëåäîâàíèÿ â îáåèõ îáëàñòÿõ, îäíàêî ìåòîäû íåëèíåéíîé äèíàìèêè äî íàñòîÿùåãî âðåìåíè íå íàõîäèëè êîìïëåêñíîãî ïðèìåíåíèÿ â îáëàñòè ìóëüòèàãåíòíûõ ðîáîòîòåõíè÷åñêèõ ñèñòåì.  

 ðåçóëüòàòå áûëè ïîëó÷åíû ìåòîäû íåëèíåéíîãî àíàëèçà ñëîæíûõ äèíàìè÷åñêèõ ñèñòåì íà îñíîâå ìàòðè÷íîé äåêîìïîçèöèè â ïðîñòðàíñòâå ñîñòîÿíèé, àëãîðèòìû óïðàâëåíèÿ ðîáîòîòåõíè÷åñêèìè àïïàðàòàìè íà îñíîâå ìóëüòèàãåíòíîãî ïîäõîäà, â ÷èñëî êîòîðûõ âõîäÿò àëãîðèòì îïòèìèçàöèè ñòðóêòóðû ôóíêöèîíèðîâàíèÿ ìóëüòèàãåíòíîé ñèñòåìû äëÿ ïîâûøåíèÿ å¸ ýôôåêòèâíîñòè, àëãîðèòì àíàëèçà ñåìàíòèêè ñîîáùåíèé äëÿ îðãàíèçàöèè âçàèìîäåéñòâèÿ ìåæäó àãåíòàìè, àëãîðèòìû ïðåäñòàâëåíèÿ è îáðàáîòêè äàííûõ äëÿ àäàïòèâíîé ðàáîòû ñèñòåì óïðàâëåíèÿ.

Ëèòåðàòóðà:
  1. Kðoò À.Ì. Äèñêðåòíûå ìîäåëè äèíàìè÷åñêèõ ñèñòåì íà îñíîâå ïîëèíîìèàëüíîé àëãåáðû. Ìèíñê: Íàâóêà ³ òýõí³êà, 1990. – 312 ñ. (ìîíîãðàôèÿ)
  2. Linkevich A.D. Mathematical methods and models for investigation of neurodynamical mechanisms of cognitive processes / Ed. by Prof. A.M. Krot. Minsk/Polotsk: IEC/PSU, 2001. –204 p. (ìîíîãðàôèÿ)
  3. Êðîò À.Ì. Î ìóëüòèïëèêàòèâíîé ñëîæíîñòè áèëèíåéíûõ ôîðì, äëÿ êîòîðûõ ïðåîáðàçîâàíèå Âàíäåðìîíäà ÿâëÿåòñÿ ñîáñòâåííûì //Äîêëàäû ÀÍ ÑÑÑÐ. – 1990. – Ò. 314. – ¹ 6. – Ñ. 1312-1315; ñòàòüÿ ïåðåèçäàíà â æóðíàëå Soviet Math. Dokl. (translation of Mathematics Section of Doklady AN SSSR), vol. 42, no.2, pp.646-650, 1991 (èìïàêò-ôàêòîð æóðíàëà – 0,222).
  4. Êðîò À.Ì. Ñïåêòðàëüíûé àíàëèç êëàññà íåñòàöèîíàðíûõ ñëó÷àéíûõ ïðîöåññîâ â äèñêðåòíûõ áèîðòîãîíàëüíûõ áàçèñàõ. // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. – 1989. – Ò. 34. – ¹ 1. – Ñ.59-68; ñòàòüÿ ïåðåèçäàíà â æóðíàëå Soviet J. Comm. Tech. Electron., vol. 34, no.12, pp.51-59, 1989 (èìïàêò-ôàêòîð æóðíàëà – 0,26).
  5. Êðîò À.Ì. Ñèíòåç áûñòðûõ àëãîðèòìîâ äëÿ ðåøåíèÿ çàäà÷ îïòèìàëüíîãî äèñêðåòíîãî óïðàâëåíèÿ ìåòîäîì ïîëèíîìèàëüíûõ óðàâíåíèé. // ÐÀÍ. Àâòîìàòèêà è òåëåìåõàíèêà. – 1996. – ¹ 8. – Ñ, 22-35; ñòàòüÿ ïåðåèçäàíà â æóðíàëå Automation and Remote Control, vol. 57, no. 8, pp.1079-1090, 1996 (èìïàêò-ôàêòîð æóðíàëà – 0,259).
  6. Krot A.M. Matrix decomposition of vector function and shift operators on the trajectories of a nonlinear dynamical system. // Nonlinear Phenomena in Complex Systems. – 2001. – Vol.4. – No.2. –P. 106-115.
  7. Krot A.M., Tkachova P.P., Goncharov B.A. New approach to speech signal recognition using nonlinear signal decomposition by measuring Wiener kernels. // Smart Engineering System Design. – 2002. – Vol.4. –P. 265-276 (Francis&Taylor Publ. Co.).
  8. Krot A.M., Minervina H.B. Minimal attractor embedding estimation based on matrix decomposition for analysis of dynamical systems. // Nonlinear Phenomena in Complex Systems. – 2002. – Vol.5. – No.2. –P. 161-172.
  9. Baldin V.A., Krot A.M., Minervina H.B. The development of model for boundary layers past a concave wall with usage of nonlinear dynamics methods // Advances in Space Research. – 2006. – Vol. 37 – ¹ 3. – P. 501-506 (Elsevier Publ. Co., èìïàêò-ôàêòîð æóðíàëà – 1,079).
  10. Krot A.M. The development of matrix decomposition theory for nonlinear analysis of chaotic attractors of complex systems and signals // Proc. of IEEE 16th International Conference on Digital Signal Processing (DSP 2009), Thira, Santorini, Greece, July 5-7, 2009.
  11. Ïðîêîïîâè÷ Ã.À., Ñû÷¸â Â.À. Ìîäåëèðîâàíèå êîëëåêòèâíîãî ïîâåäåíèÿ ðîáîòîâ äëÿ ïîèñêîâî-èññëåäîâàòåëüñêèõ çàäà÷ // Òðóäû XXI Ìåæäóíàðîäíîé íàó÷íî-òåõíè÷åñêîé êîíôåðåíöèè «Ýêñòðåìàëüíàÿ ðîáîòîòåõíèêà».- Ñàíêò-Ïåòåðáóðã: Èçä-âî «Ïîëèòåõíèêà-ñåðâèñ», 2010. Ñ. 237-243.
  12. Ïðîêîïîâè÷ Ã.À. Íåéðîñåòåâîé áëîê ïàìÿòè äëÿ àäàïòèâíîé ðàáîòû ñëîæíûõ òåõíè÷åñêèõ ñèñòåì â äèíàìè÷åñêîé ñðåäå          Èíôîðìàòèêà, ¹2(26), 2010, Ñ. 54-65.
  13. Ïðîêîïîâè÷ Ã.À., Ñû÷¸â Â.À. Óñòðîéñòâî àññîöèàòèâíîãî ðàñïîçíàâàíèÿ ñåíñîðíîé èíôîðìàöèè íà îñíîâå õàîòè÷åñêèõ àâòîêîëåáàíèé // Òðóäû ìåæäóíàðîäíîé ìàòåìàòè÷åñêîé øêîëû "Âîïðîñû îïòèìèçàöèè âû÷èñëåíèé (ÏÎÎ-XXXV11)".- Êèåâ, 2011. Ñ. 156-157.
  14.  Ïîëó÷åíî ðåøåíèå î âûäà÷å ïàòåíòà ïî çàÿâêå íà ïîëåçíóþ ìîäåëü ¹20110574 «Óñòðîéñòâî äëÿ îáðàáîòêè ñåíñîðíûõ äàííûõ», àâò. Ïðîêîïîâè÷ Ã.À.